Friday 13 October 2017

Eksponensiell Veide Moving Average Eksemplet


Utforsking av eksponentielt vektet Flytende Gjennomsnittlig volatilitet er det vanligste risikobilledet, men det kommer i flere smaker. I en tidligere artikkel viste vi hvordan du kan beregne enkel historisk volatilitet. (For å lese denne artikkelen, se Bruke volatilitet for å måle fremtidig risiko.) Vi brukte Googles faktiske aksjekursdata for å beregne den daglige volatiliteten basert på 30 dagers lagerdata. I denne artikkelen vil vi forbedre den enkle volatiliteten og diskutere eksponentielt vektet glidende gjennomsnitt (EWMA). Historisk Vs. Implisitt volatilitet Først kan vi sette denne metriske inn i litt perspektiv. Det er to brede tilnærminger: historisk og underforstått (eller implisitt) volatilitet. Den historiske tilnærmingen antar at fortid er prolog, vi måler historie i håp om at det er forutsigbart. Implisitt volatilitet, derimot, ignorerer historien den løser for volatiliteten underforstått av markedsprisene. Det håper at markedet vet best, og at markedsprisen inneholder, selv om det implisitt er, et konsensusoverslag over volatiliteten. Hvis du fokuserer på bare de tre historiske tilnærmingene (til venstre over), har de to trinn til felles: Beregn serien av periodisk avkastning Bruk en vektingsplan Først må vi beregne periodisk avkastning. Det er vanligvis en serie av daglige avkastninger der hver retur er uttrykt i kontinuerlig sammensatte vilkår. For hver dag tar vi den naturlige loggen av forholdet mellom aksjekursene (det vil si prisen i dag fordelt på pris i går, og så videre). Dette gir en rekke daglige avkastninger, fra deg til deg i-m. avhengig av hvor mange dager (m dager) vi måler. Det får oss til det andre trinnet: Det er her de tre tilnærmingene er forskjellige. I den forrige artikkelen (Bruke volatilitet for å måle fremtidig risiko) viste vi at det med noen akseptable forenklinger er den enkle variansen gjennomsnittet av kvadreret retur: Legg merke til at dette beløper hver periodisk avkastning, og deler deretter den totale av antall dager eller observasjoner (m). Så, det er egentlig bare et gjennomsnitt av den kvadratiske periodiske avkastningen. Sett på en annen måte, hver kvadret retur blir gitt like vekt. Så hvis alfa (a) er en vektningsfaktor (spesifikt en 1m), ser en enkel varians slik ut: EWMA forbedrer seg på enkel variasjon Svakheten i denne tilnærmingen er at alle avkastningene tjener samme vekt. Yesterdays (veldig nylig) avkastning har ingen større innflytelse på variansen enn de siste månedene tilbake. Dette problemet er løst ved å bruke det eksponentielt vektede glidende gjennomsnittet (EWMA), der nyere avkastning har større vekt på variansen. Det eksponentielt vektede glidende gjennomsnittet (EWMA) introduserer lambda. som kalles utjevningsparameteren. Lambda må være mindre enn en. Under denne betingelsen, i stedet for likevekter, vektlegges hver kvadret retur med en multiplikator på følgende måte: Risikostyringsfirmaet RiskMetrics TM har for eksempel en tendens til å bruke en lambda på 0,94 eller 94. I dette tilfellet er den første ( siste) kvadratiske periodiske avkastningen er vektet av (1-0.94) (.94) 0 6. Den neste kvadrerade retur er bare et lambda-flertall av den tidligere vekten i dette tilfellet 6 multiplisert med 94 5,64. Og den tredje forrige dagens vekt er lik (1-0,94) (0,94) 2 5,30. Det er betydningen av eksponensiell i EWMA: hver vekt er en konstant multiplikator (dvs. lambda, som må være mindre enn en) av den tidligere dagens vekt. Dette sikrer en variasjon som er vektet eller forspent mot nyere data. (For å lære mer, sjekk ut Excel-regnearket for Googles volatilitet.) Forskjellen mellom bare volatilitet og EWMA for Google er vist nedenfor. Enkel volatilitet veier effektivt hver periodisk avkastning med 0,196 som vist i kolonne O (vi hadde to års daglig aksjekursdata. Det er 509 daglige avkastninger og 1509 0,196). Men merk at kolonne P tildeler en vekt på 6, deretter 5,64, deretter 5,3 og så videre. Det er den eneste forskjellen mellom enkel varians og EWMA. Husk: Etter at vi summerer hele serien (i kolonne Q) har vi variansen, som er kvadratet av standardavviket. Hvis vi vil ha volatilitet, må vi huske å ta kvadratroten av den variansen. Hva er forskjellen i den daglige volatiliteten mellom variansen og EWMA i Googles tilfelle. Det er signifikant: Den enkle variansen ga oss en daglig volatilitet på 2,4, men EWMA ga en daglig volatilitet på bare 1,4 (se regnearket for detaljer). Tilsynelatende avviklet Googles volatilitet mer nylig, derfor kan en enkel varianse være kunstig høy. Dagens variasjon er en funksjon av Pior Days Variance Du vil legge merke til at vi trengte å beregne en lang rekke eksponentielt avtagende vekter. Vi vil ikke gjøre matematikken her, men en av EWMAs beste egenskaper er at hele serien reduserer til en rekursiv formel: Rekursiv betyr at dagens variansreferanser (dvs. er en funksjon av tidligere dager varians). Du kan også finne denne formelen i regnearket, og det gir nøyaktig samme resultat som longhandberegningen. Det står: Dagens varians (under EWMA) er lik ydersidens varians (veid av lambda) pluss yderdagskvadret retur (veid av en minus lambda). Legg merke til hvordan vi bare legger til to begreper sammen: Yesterdays weighted variance og yesterdays weighted, squared return. Likevel er lambda vår utjevningsparameter. En høyere lambda (for eksempel som RiskMetrics 94) indikerer tregere forfall i serien - relativt sett vil vi ha flere datapunkter i serien, og de kommer til å falle av sakte. På den annen side, hvis vi reduserer lambda, indikerer vi høyere forfall: vikene faller av raskere, og som et direkte resultat av det raske forfallet blir færre datapunkter benyttet. (I regnearket er lambda en inngang, slik at du kan eksperimentere med følsomheten). Sammendrag Volatilitet er den øyeblikkelige standardavviket for en aksje og den vanligste risikometrisk. Det er også kvadratroten av variansen. Vi kan måle variansen historisk eller implisitt (implisitt volatilitet). Når man måler historisk, er den enkleste metoden enkel varians. Men svakheten med enkel varians er alle returene får samme vekt. Så vi står overfor en klassisk avvei: vi vil alltid ha mer data, men jo flere data vi har jo mer vår beregning er fortynnet av fjernt (mindre relevant) data. Det eksponentielt vektede glidende gjennomsnittet (EWMA) forbedres på enkel varians ved å tildele vekt til periodisk retur. Ved å gjøre dette kan vi begge bruke en stor utvalgsstørrelse, men gi også større vekt til nyere avkastninger. (For å se en filmopplæring om dette emnet, besøk Bionic Turtle.) Beta er et mål for volatiliteten eller systematisk risiko for en sikkerhet eller en portefølje i forhold til markedet som helhet. En type skatt belastet kapitalgevinster pådratt av enkeltpersoner og selskaper. Kapitalgevinst er fortjenesten som en investor. En ordre om å kjøpe en sikkerhet til eller under en spesifisert pris. En kjøpsgrenseordre tillater handelsmenn og investorer å spesifisere. En IRS-regelen (Internal Revenue Service) som tillater straffefri uttak fra en IRA-konto. Regelen krever det. Det første salg av aksjer av et privat selskap til publikum. IPO er ofte utstedt av mindre, yngre selskaper som søker. Gjeldsgrad er gjeldsraten som brukes til å måle selskapets økonomiske innflytelse eller en gjeldsgrad som brukes til å måle en person. Vektet gjennomsnitt: Grunnleggende I løpet av årene har teknikere funnet to problemer med det enkle glidende gjennomsnittet. Det første problemet ligger i tidsrammen for det bevegelige gjennomsnittet (MA). De fleste tekniske analytikere tror at prisaksjonen. Åpne eller avsluttende aksjekurs, er ikke nok til å avhenge av riktig forutsi kjøp eller salg av signaler fra MAs crossover-handlingen. For å løse dette problemet, tilordner analytikere nå mer vekt til de nyeste prisdataene ved å bruke det eksponensielt glattede glidende gjennomsnittet (EMA). (Lær mer om å utforske det eksponentielt veide flytende gjennomsnitt.) Et eksempel For eksempel, ved hjelp av en 10-dagers MA, ville en analytiker ta sluttprisen på den tiende dagen og multiplisere dette nummeret med 10, den niende dagen med ni, den åttende dag med åtte og så videre til den første av MA. Når summen er blitt bestemt, vil analytikeren da dele tallet ved tilsetning av multiplikatorene. Hvis du legger til multiplikatorene i 10-dagers MA-eksemplet, er tallet 55. Denne indikatoren er kjent som det lineært vektede glidende gjennomsnittet. (For beslektet lesing, sjekk ut enkle bevegelige gjennomsnitt, gjør trender stående ut.) Mange teknikere er fast troende på det eksponensielt glattede glidende gjennomsnittet (EMA). Denne indikatoren har blitt forklart på så mange forskjellige måter at det forveksler både studenter og investorer. Kanskje den beste forklaringen kommer fra John J. Murphys tekniske analyse av finansmarkedene, (publisert av New York Institute of Finance, 1999): Det eksponentielt glattede glidende gjennomsnittet adresserer begge problemene forbundet med det enkle glidende gjennomsnittet. For det første tilordner det eksponentielt glatte gjennomsnittet en større vekt til nyere data. Derfor er det et vektet glidende gjennomsnitt. Men mens den tilordner mindre betydning for tidligere prisdata, inkluderer den i beregningen alle dataene i instrumentets levetid. I tillegg er brukeren i stand til å justere vektingen for å gi større eller mindre vekt til den siste dagsprisen, som legges til en prosentandel av verdien for tidligere dager. Summen av begge prosentverdiene legger til 100. For eksempel kan den siste dagens pris tildeles en vekt på 10 (.10), som legges til den forrige dagens vekt på 90 (.90). Dette gir den siste dagen 10 av totalvekten. Dette ville være tilsvarer et 20-dagers gjennomsnitt, ved å gi den siste dagens pris en mindre verdi på 5 (.05). Figur 1: Eksponentielt glatt flyttende gjennomsnitt Ovennevnte diagram viser Nasdaq Composite Index fra den første uken i august 2000 til 1. juni 2001. Som du tydeligvis kan se, er EMA, som i dette tilfellet bruker sluttprisdataene over en 9-dagers periode, har bestemte salgssignaler den 8. september (merket med en svart nedpilt). Dette var dagen da indeksen brøt under 4000-nivået. Den andre svarte pilen viser et annet nedre ben som teknikerne faktisk forventer. Nasdaq kunne ikke generere nok volum og interesse fra detaljhandlerne til å bryte 3000 mark. Derefter dør du ned igjen til bunnen ut på 1619.58 på 4. april. Opptrenden av 12. april er markert med en pil. Her stengte indeksen på 1961,46, og teknikere begynte å se institusjonelle fondforvaltere begynner å hente opp gode kjøp som Cisco, Microsoft og noen av energirelaterte problemstillinger. (Les våre relaterte artikler: Flytte gjennomsnittlige konvolutter: Raffinere et populært handelsverktøy og flytte gjennomsnittlig avvisning.) Beta er et mål for volatiliteten eller systematisk risiko for en sikkerhet eller en portefølje i forhold til markedet som helhet. En type skatt belastet kapitalgevinster pådratt av enkeltpersoner og selskaper. Kapitalgevinst er fortjenesten som en investor. En ordre om å kjøpe en sikkerhet til eller under en spesifisert pris. En kjøpsgrenseordre tillater handelsmenn og investorer å spesifisere. En IRS-regelen (Internal Revenue Service) som tillater straffefri uttak fra en IRA-konto. Regelen krever det. Det første salg av aksjer av et privat selskap til publikum. IPO er ofte utstedt av mindre, yngre selskaper som søker. Gjeldsgrad er gjeldsraten som brukes til å måle selskapets økonomiske innflytelse eller en gjeldsgrad som brukes til å måle en person. Hvordan beregne veidede flytende gjennomsnitt i Excel ved hjelp av eksponentiell utjevning Excel-dataanalyse for dummier, 2. utgave Eksponensiell utjevning i Excel beregner bevegelsen gjennomsnitt. Eksponensiell utjevning veier imidlertid verdiene som er inkludert i de bevegelige gjennomsnittlige beregningene, slik at nyere verdier har større effekt på gjennomsnittlig beregning og gamle verdier har mindre effekt. Denne vektningen oppnås gjennom en utjevningskonstant. For å illustrere hvordan verktøyet for eksponensiell utjevning fungerer, antar at du igjen ser på gjennomsnittlig daglig temperaturinformasjon. For å beregne vektede glidende gjennomsnitt ved hjelp av eksponensiell utjevning, gjør du følgende: For å beregne et eksponentielt glatt glidende gjennomsnitt, klikker du først på knappen Data Tab8217s Data Analysis. Når Excel viser dialogboksen Dataanalyse, velger du Eksponensiell utjevning fra listen og klikker deretter OK. Excel viser dialogboksen Eksponensiell utjevning. Identifiser dataene. For å identifisere dataene du vil beregne et eksponentielt glatt glidende gjennomsnitt for, klikker du i tekstfeltet Inngangsområde. Deretter identifiserer du innspillingsområdet, enten ved å skrive inn et regnearkområdeadresse eller ved å velge regnearkområdet. Hvis inntastingsområdet ditt inneholder en tekstetikett for å identifisere eller beskrive dataene dine, velger du avmerkingsboksen Merker. Gi utjevningskonstanten. Skriv inn utjevningens konstante verdi i tekstfeltet Damping Factor. Excel-hjelpefilen antyder at du bruker en utjevningskonstant på mellom 0,2 og 0,3. Formentlig, men hvis du bruker dette verktøyet, har du egne ideer om hva riktig utjevningskonstant er. (Hvis you8217re clueless om utjevningskonstanten, bør du kanskje ikke bruke dette verktøyet.) Fortell Excel hvor du skal plassere eksponentielt glattede, glidende gjennomsnittlige data. Bruk tekstboksen Utgangsområde for å identifisere arbeidsarkområdet som du vil plassere de bevegelige gjennomsnittsdataene i. I eksempelbordseksempelet plasserer du for eksempel de bevegelige gjennomsnittsdataene i regnearkområdet B2: B10. (Valgfritt) Tegn på eksponensielt glattede data. For å kartlegge eksponensielt jevndata, merk av i avkrysningsboksen Kartutgang. (Valgfritt) Angi at du vil at standard feilinformasjon skal beregnes. Hvis du vil beregne standardfeil, merker du av for Standard feil. Excel plasserer standardfeilverdier ved siden av eksponentielt glattede glidende gjennomsnittsverdier. Når du er ferdig med å spesifisere hvilken flyttende gjennomsnittlig informasjon du vil beregne og hvor du vil plassere den, klikker du OK. Excel beregner glidende gjennomsnittsinformasjon. Gjennomsnittlig og eksponensiell utjevningsmodell Som et første skritt i å bevege seg ut over gjennomsnittlige modeller, kan tilfeldige gange modeller, og lineære trendmodeller, ikke-sone-mønstre og trender ekstrapoleres ved hjelp av en glidende eller utjevningsmodell. Den grunnleggende forutsetningen bak gjennomsnittlige og utjevningsmodeller er at tidsseriene er lokalt stasjonære med et sakte varierende middel. Derfor tar vi et flytende (lokalt) gjennomsnitt for å anslå dagens verdi av gjennomsnittet, og deretter bruke det som prognosen for nær fremtid. Dette kan betraktes som et kompromiss mellom den gjennomsnittlige modellen og den tilfeldige-walk-uten-drift-modellen. Den samme strategien kan brukes til å estimere og ekstrapolere en lokal trend. Et glidende gjennomsnitt kalles ofte en quotsmoothedquot-versjon av den opprinnelige serien, fordi kortsiktig gjennomsnittsverdi medfører utjevning av støtene i den opprinnelige serien. Ved å justere graden av utjevning (bredden på det bevegelige gjennomsnittet), kan vi håpe å finne en slags optimal balanse mellom ytelsen til de gjennomsnittlige og tilfeldige turmodellene. Den enkleste typen gjennomsnittlig modell er. Enkel (likevektet) Flytende gjennomsnitt: Værvarselet for verdien av Y på tidspunktet t1 som er laget på tidspunktet t, er det enkle gjennomsnittet av de nyeste m-observasjonene: (Her og andre steder vil jeg bruke symbolet 8220Y-hat8221 til å stå for en prognose av tidsserien Y som ble gjort så tidlig som mulig ved en gitt modell.) Dette gjennomsnittet er sentrert ved period-t (m1) 2, noe som innebærer at estimatet av det lokale middel vil ha en tendens til å ligge bak den sanne verdien av det lokale gjennomsnittet med ca. (m1) 2 perioder. Således sier vi at gjennomsnittsalderen for dataene i det enkle glidende gjennomsnittet er (m1) 2 i forhold til perioden for prognosen beregnes. Dette er hvor lang tid det vil være å prognostisere prognoser bak vendepunkter i dataene . For eksempel, hvis du er i gjennomsnitt de siste 5 verdiene, vil prognosene være omtrent 3 perioder sent i å svare på vendepunkter. Merk at hvis m1, den enkle glidende gjennomsnittlige (SMA) modellen er lik den tilfeldige turmodellen (uten vekst). Hvis m er veldig stor (sammenlignbar med lengden på estimeringsperioden), svarer SMA-modellen til den gjennomsnittlige modellen. Som med hvilken som helst parameter i en prognosemodell, er det vanlig å justere verdien av k for å oppnå den beste kvote kvoten til dataene, dvs. de minste prognosefeilene i gjennomsnitt. Her er et eksempel på en serie som ser ut til å vise tilfeldige svingninger rundt et sakte varierende middel. Først kan vi prøve å passe den med en tilfeldig walk-modell, noe som tilsvarer et enkelt bevegelige gjennomsnitt på 1 sikt: Den tilfeldige turmodellen reagerer veldig raskt på endringer i serien, men i så måte velger den mye av kvotenivået i data (tilfeldige svingninger) samt quotsignalquot (det lokale gjennomsnittet). Hvis vi i stedet prøver et enkelt glidende gjennomsnitt på 5 termer, får vi et smidigere sett med prognoser: Det 5-tiden enkle glidende gjennomsnittet gir betydelig mindre feil enn den tilfeldige turmodellen i dette tilfellet. Gjennomsnittsalderen for dataene i denne prognosen er 3 ((51) 2), slik at den har en tendens til å ligge bak vendepunktene med tre perioder. (For eksempel ser det ut til at en nedtur har skjedd i perioden 21, men prognosene vender seg ikke til flere perioder senere.) Legg merke til at de langsiktige prognosene fra SMA-modellen er en horisontal rettlinje, akkurat som i tilfeldig gang modell. Således antar SMA-modellen at det ikke er noen trend i dataene. Mens prognosene fra den tilfeldige turmodellen ganske enkelt er lik den siste observerte verdien, er prognosene fra SMA-modellen lik et veid gjennomsnitt av de siste verdiene. De konfidensgrenser som beregnes av Statgraphics for de langsiktige prognosene for det enkle glidende gjennomsnittet, blir ikke større da prognoseperioden øker. Dette er åpenbart ikke riktig. Dessverre er det ingen underliggende statistisk teori som forteller oss hvordan konfidensintervallene skal utvide seg for denne modellen. Det er imidlertid ikke så vanskelig å beregne empiriske estimater av konfidensgrensene for lengre horisontprognoser. For eksempel kan du sette opp et regneark der SMA-modellen skulle brukes til å prognose 2 trinn foran, 3 trinn fremover, etc. i den historiske dataprøven. Du kan deretter beregne utvalgsstandardavvikene til feilene i hver prognosehorisont, og deretter konstruere konfidensintervaller for langsiktige prognoser ved å legge til og trekke ut multipler av riktig standardavvik. Hvis vi prøver et 9-sikt enkelt glidende gjennomsnitt, får vi enda jevnere prognoser og mer av en bremseeffekt: Gjennomsnittsalderen er nå 5 perioder (91) 2). Hvis vi tar et 19-årig glidende gjennomsnitt, øker gjennomsnittsalderen til 10: Legg merke til at prognosene nå faller bakom vendepunkter med ca 10 perioder. Hvilken mengde utjevning er best for denne serien Her er et bord som sammenligner feilstatistikken sin, også et gjennomsnitt på tre sikt: Modell C, 5-års glidende gjennomsnitt, gir den laveste verdien av RMSE med en liten margin over 3 term og 9-sikt gjennomsnitt, og deres andre statistikker er nesten identiske. Så, blant modeller med svært like feilstatistikk, kan vi velge om vi foretrekker litt mer respons eller litt mer glatt i prognosene. (Tilbake til toppen av siden.) Browns Simple Exponential Smoothing (eksponentielt vektet glidende gjennomsnitt) Den enkle glidende gjennomsnittsmodellen beskrevet ovenfor har den uønskede egenskapen som den behandler de siste k-observasjonene, like og fullstendig ignorerer alle foregående observasjoner. Intuitivt bør tidligere data diskonteres på en mer gradvis måte - for eksempel bør den siste observasjonen få litt mer vekt enn 2. siste, og den 2. siste skal få litt mer vekt enn den 3. siste, og så videre. Den enkle eksponensielle utjevning (SES) - modellen oppnår dette. La 945 betegne en quotsmoothing constantquot (et tall mellom 0 og 1). En måte å skrive modellen på er å definere en serie L som representerer dagens nivå (dvs. lokal middelverdi) av serien som estimert fra data til nå. Verdien av L ved tid t beregnes rekursivt fra sin egen tidligere verdi slik: Således er den nåværende glattede verdien en interpolering mellom den forrige glattede verdien og den nåværende observasjonen, hvor 945 styrer nærheten til den interpolerte verdien til den nyeste observasjon. Forventningen for neste periode er bare den nåværende glatte verdien: Tilsvarende kan vi uttrykke neste prognose direkte i forhold til tidligere prognoser og tidligere observasjoner, i en hvilken som helst av de tilsvarende versjoner. I den første versjonen er prognosen en interpolasjon mellom forrige prognose og tidligere observasjon: I den andre versjonen blir neste prognose oppnådd ved å justere forrige prognose i retning av den forrige feilen med en brøkdel av 945. Er feilen gjort ved tid t. I den tredje versjonen er prognosen et eksponentielt vektet (dvs. nedsatt) glidende gjennomsnitt med rabattfaktor 1-945: Interpolasjonsversjonen av prognoseformelen er den enkleste å bruke hvis du implementerer modellen på et regneark: det passer inn i en enkeltcelle og inneholder cellehenvisninger som peker på forrige prognose, forrige observasjon og cellen der verdien av 945 er lagret. Merk at hvis 945 1 er SES-modellen tilsvarer en tilfeldig turmodell (uten vekst). Hvis 945 0 er SES-modellen ekvivalent med den gjennomsnittlige modellen, forutsatt at den første glattede verdien er satt lik gjennomsnittet. (Gå tilbake til toppen av siden.) Gjennomsnittsalderen for dataene i prognosen for enkel eksponensiell utjevning er 1 945 i forhold til perioden for prognosen beregnes. (Dette skal ikke være åpenbart, men det kan enkelt vises ved å vurdere en uendelig serie.) Derfor har den enkle, glidende gjennomsnittlige prognosen en tendens til å ligge bak vendepunktene med rundt 1 945 perioder. For eksempel, når 945 0,5 lag er 2 perioder når 945 0.2 lag er 5 perioder når 945 0,1 lag er 10 perioder, og så videre. For en gitt gjennomsnittlig alder (det vil si mengden lag), er prognosen for enkel eksponensiell utjevning (SES) noe bedre enn SMA-prognosen (Simple Moving Average) fordi den legger relativt mer vekt på den siste observasjonen - dvs. det er litt mer quotresponsivequot for endringer som oppstod i den siste tiden. For eksempel har en SMA-modell med 9 vilkår og en SES-modell med 945 0,2 begge en gjennomsnittlig alder på 5 for dataene i prognosene, men SES-modellen legger mer vekt på de siste 3 verdiene enn SMA-modellen og ved Samtidig er det ikke 8220forget8221 om verdier som er mer enn 9 år gamle, som vist i dette diagrammet. En annen viktig fordel ved SES-modellen over SMA-modellen er at SES-modellen bruker en utjevningsparameter som er kontinuerlig variabel, slik at den lett kan optimaliseres ved å bruke en quotsolverquot-algoritme for å minimere den gjennomsnittlige kvadratfeilen. Den optimale verdien av 945 i SES-modellen for denne serien viser seg å være 0,2961, som vist her: Gjennomsnittsalderen for dataene i denne prognosen er 10,2961 3,4 perioder, noe som ligner på et 6-sikt enkelt glidende gjennomsnitt. De langsiktige prognosene fra SES-modellen er en horisontal rett linje. som i SMA-modellen og den tilfeldige turmodellen uten vekst. Vær imidlertid oppmerksom på at konfidensintervallene som beregnes av Statgraphics, divergerer nå på en rimelig måte, og at de er vesentlig smalere enn konfidensintervallene for den tilfeldige turmodellen. SES-modellen antar at serien er noe mer forutsigbar enn den tilfeldige turmodellen. En SES-modell er faktisk et spesielt tilfelle av en ARIMA-modell. slik at den statistiske teorien om ARIMA-modeller gir et solid grunnlag for beregning av konfidensintervall for SES-modellen. Spesielt er en SES-modell en ARIMA-modell med en ikke-sesongforskjell, en MA (1) og ikke en konstant periode. ellers kjent som en quotARIMA (0,1,1) modell uten constantquot. MA (1) - koeffisienten i ARIMA-modellen tilsvarer mengden 1-945 i SES-modellen. For eksempel, hvis du passer på en ARIMA (0,1,1) modell uten konstant til serien analysert her, viser den estimerte MA (1) - koeffisienten seg å være 0,7029, som er nesten nøyaktig en minus 0,2961. Det er mulig å legge til antagelsen om en konstant lineær trend uten null som en SES-modell. For å gjøre dette oppgir du bare en ARIMA-modell med en ikke-sesongforskjell og en MA (1) - sikt med en konstant, dvs. en ARIMA-modell (0,1,1) med konstant. De langsiktige prognosene vil da ha en trend som er lik den gjennomsnittlige trenden observert over hele estimeringsperioden. Du kan ikke gjøre dette i forbindelse med sesongjustering, fordi sesongjusteringsalternativene er deaktivert når modelltypen er satt til ARIMA. Du kan imidlertid legge til en konstant langsiktig eksponensiell trend for en enkel eksponensiell utjevningsmodell (med eller uten sesongjustering) ved å bruke inflasjonsjusteringsalternativet i prognoseprosedyren. Den aktuelle kvoteringskvoten (prosentvekst) per periode kan estimeres som hellingskoeffisienten i en lineær trendmodell som er montert på dataene i forbindelse med en naturlig logaritme transformasjon, eller det kan være basert på annen uavhengig informasjon om langsiktige vekstutsikter . (Tilbake til toppen av siden.) Browns Lineær (dvs. dobbel) Eksponensiell utjevning SMA-modellene og SES-modellene antar at det ikke er noen trend av noe slag i dataene (som vanligvis er OK eller i det minste ikke altfor dårlig for 1- trinnvise prognoser når dataene er relativt støyende), og de kan modifiseres for å inkorporere en konstant lineær trend som vist ovenfor. Hva med kortsiktige trender Hvis en serie viser en varierende vekstnivå eller et syklisk mønster som skiller seg tydelig ut mot støyen, og hvis det er behov for å prognose mer enn 1 periode framover, kan estimering av en lokal trend også være et problem. Den enkle eksponensielle utjevningsmodellen kan generaliseres for å oppnå en lineær eksponensiell utjevning (LES) modell som beregner lokale estimater av både nivå og trend. Den enkleste tidsvarierende trendmodellen er Browns lineær eksponensiell utjevningsmodell, som bruker to forskjellige glatte serier som er sentrert på forskjellige tidspunkter. Forutsigelsesformelen er basert på en ekstrapolering av en linje gjennom de to sentrene. (En mer sofistikert versjon av denne modellen, Holt8217s, blir diskutert nedenfor.) Den algebraiske form av Brown8217s lineær eksponensiell utjevningsmodell, som den enkle eksponensielle utjevningsmodellen, kan uttrykkes i en rekke forskjellige, men liknende former. Denne standardmodellen er vanligvis uttrykt som følger: La S betegne den enkeltglattede serien som er oppnådd ved å anvende enkel eksponensiell utjevning til serie Y. Dvs. verdien av S ved period t er gitt av: (Husk at, under enkle eksponensiell utjevning, dette ville være prognosen for Y ved periode t1.) Lad deretter Squot betegne den dobbeltslettede serien oppnådd ved å anvende enkel eksponensiell utjevning (ved hjelp av samme 945) til serie S: Endelig prognosen for Y tk. for noe kgt1, er gitt av: Dette gir e 1 0 (det vil si lure litt, og la den første prognosen være den samme første observasjonen) og e 2 Y 2 8211 Y 1. hvoretter prognosene genereres ved å bruke ligningen ovenfor. Dette gir de samme monterte verdiene som formelen basert på S og S dersom sistnevnte ble startet med S 1 S 1 Y 1. Denne versjonen av modellen brukes på neste side som illustrerer en kombinasjon av eksponensiell utjevning med sesongjustering. Holt8217s Lineær eksponensiell utjevning Brown8217s LES-modell beregner lokale estimater av nivå og trend ved å utjevne de siste dataene, men det faktum at det gjør det med en enkelt utjevningsparameter, stiller en begrensning på datamønstrene som den kan passe: nivået og trenden er ikke tillatt å variere til uavhengige priser. Holt8217s LES-modellen løser dette problemet ved å inkludere to utjevningskonstanter, en for nivået og en for trenden. Til enhver tid t, som i Brown8217s modell, er det et estimat L t på lokalt nivå og et estimat T t av den lokale trenden. Her beregnes de rekursivt fra verdien av Y observert ved tid t og de forrige estimatene av nivået og trenden ved to likninger som gjelder eksponensiell utjevning til dem separat. Hvis estimert nivå og trend ved tid t-1 er L t82091 og T t-1. henholdsvis, da var prognosen for Y tshy som ville vært gjort på tidspunktet t-1, lik L t-1 T t-1. Når den faktiske verdien er observert, beregnes det oppdaterte estimatet av nivået rekursivt ved å interpolere mellom Y tshy og dens prognose, L t-1 T t 1, med vekt på 945 og 1- 945. Forandringen i estimert nivå, nemlig L t 8209 L t82091. kan tolkes som en støyende måling av trenden på tidspunktet t. Det oppdaterte estimatet av trenden beregnes deretter rekursivt ved å interpolere mellom L t 8209 L t82091 og det forrige estimatet av trenden, T t-1. ved bruk av vekter av 946 og 1-946: Fortolkningen av trend-utjevningskonstanten 946 er analog med den for nivåutjevningskonstanten 945. Modeller med små verdier på 946 antar at trenden bare endrer seg veldig sakte over tid, mens modeller med større 946 antar at det endrer seg raskere. En modell med en stor 946 mener at den fjerne fremtiden er veldig usikker, fordi feil i trendberegning blir ganske viktig når det regnes med mer enn en periode framover. (Tilbake til toppen av siden.) Utjevningskonstantene 945 og 946 kan estimeres på vanlig måte ved å minimere gjennomsnittlig kvadratfeil i de 1-trinns prognosene. Når dette gjøres i Statgraphics, viser estimatene seg å være 945 0.3048 og 946 0.008. Den svært små verdien av 946 betyr at modellen tar svært liten endring i trenden fra en periode til den neste, så i utgangspunktet prøver denne modellen å estimere en langsiktig trend. I analogi med begrepet gjennomsnittlig alder av dataene som brukes til å estimere det lokale nivået i serien, er gjennomsnittsalderen for dataene som brukes til estimering av lokal trenden, proporsjonal med 1 946, men ikke akkurat lik den . I dette tilfellet viser det seg å være 10 006 125. Dette er et svært nøyaktig tall, forutsatt at nøyaktigheten av estimatet av 946 er virkelig 3 desimaler, men det er av samme generelle størrelsesorden som prøvestørrelsen på 100, så denne modellen er i gjennomsnitt over ganske mye historie i estimering av trenden. Prognoseplanet nedenfor viser at LES-modellen anslår en litt større lokal trend i slutten av serien enn den konstante trenden som er estimert i SEStrend-modellen. Også den estimerte verdien på 945 er nesten identisk med den som oppnås ved å montere SES-modellen med eller uten trend, så dette er nesten den samme modellen. Nå ser disse ut som rimelige prognoser for en modell som skal estimere en lokal trend. Hvis du 8220eyeball8221 ser dette, ser det ut som om den lokale trenden har vendt nedover på slutten av serien. Hva har skjedd Parametrene til denne modellen har blitt estimert ved å minimere den kvadriske feilen på 1-trinns prognoser, ikke langsiktige prognoser, i hvilket tilfelle trenden gjør ikke en stor forskjell. Hvis alt du ser på er 1-trinns feil, ser du ikke det større bildet av trender over (si) 10 eller 20 perioder. For å få denne modellen mer i tråd med øyehals ekstrapoleringen av dataene, kan vi manuelt justere trendutjevningskonstanten slik at den bruker en kortere basislinje for trendestimering. Hvis vi for eksempel velger å sette 946 0,1, er gjennomsnittsalderen for dataene som brukes til å estimere den lokale trenden 10 perioder, noe som betyr at vi gjennomsnittsverdi trenden over de siste 20 perioder eller så. Here8217s hva prognosen tomten ser ut hvis vi setter 946 0,1 mens du holder 945 0.3. Dette ser intuitivt fornuftig ut på denne serien, selv om det er sannsynlig farlig å ekstrapolere denne trenden mer enn 10 perioder i fremtiden. Hva med feilstatistikken Her er en modell sammenligning for de to modellene vist ovenfor, samt tre SES-modeller. Den optimale verdien av 945. For SES-modellen er ca. 0,3, men tilsvarende resultater (med henholdsvis litt mer responstid) oppnås med 0,5 og 0,2. (A) Holts lineær eksp. utjevning med alfa 0,3048 og beta 0,008 (B) Holts lineær eksp. utjevning med alfa 0,3 og beta 0,1 (C) Enkel eksponensiell utjevning med alfa 0,5 (D) Enkel eksponensiell utjevning med alfa 0,3 (E) Enkel eksponensiell utjevning med alfa 0,2 Deres statistikk er nesten identisk, slik at vi virkelig kan velge på grunnlag av 1-trinns prognosefeil i dataprøven. Vi må falle tilbake på andre hensyn. Hvis vi sterkt tror at det er fornuftig å basere dagens trendoverslag på hva som har skjedd i løpet av de siste 20 perioder eller så, kan vi gjøre en sak for LES-modellen med 945 0,3 og 946 0,1. Hvis vi ønsker å være agnostiker om det er en lokal trend, kan en av SES-modellene være enklere å forklare, og vil også gi mer mid-of-the-road prognoser for de neste 5 eller 10 periodene. (Tilbake til toppen av siden.) Hvilken type trend-ekstrapolering er best: Horisontal eller lineær Empirisk bevis tyder på at hvis dataene allerede er justert (om nødvendig) for inflasjon, kan det være uhensiktsmessig å ekstrapolere kortsiktig lineær trender veldig langt inn i fremtiden. Trender som tyder på i dag, kan løsne seg i fremtiden på grunn av ulike årsaker som forverring av produkt, økt konkurranse og konjunkturnedganger eller oppgang i en bransje. Av denne grunn utfører enkel eksponensiell utjevning ofte bedre ut av prøven enn det ellers kunne forventes, til tross for sin kvadratiske kvadratiske horisontal trend-ekstrapolering. Dampede trendmodifikasjoner av den lineære eksponensielle utjevningsmodellen brukes også i praksis til å introdusere en konservatismeddel i sine trendprognoser. Den demonstrede LES-modellen kan implementeres som et spesielt tilfelle av en ARIMA-modell, spesielt en ARIMA-modell (1,1,2). Det er mulig å beregne konfidensintervall rundt langsiktige prognoser produsert av eksponentielle utjevningsmodeller, ved å betrakte dem som spesielle tilfeller av ARIMA-modeller. (Pass på: ikke alle programmer beregner konfidensintervaller for disse modellene riktig.) Bredden på konfidensintervaller avhenger av (i) RMS-feilen i modellen, (ii) type utjevning (enkel eller lineær) (iii) verdien (e) av utjevningskonstanten (e) og (iv) antall perioder fremover du forutsetter. Generelt sprer intervallene raskere da 945 blir større i SES-modellen, og de sprer seg mye raskere når lineær snarere enn enkel utjevning brukes. Dette emnet blir diskutert videre i ARIMA-modellene i notatene. (Gå tilbake til toppen av siden.)

No comments:

Post a Comment